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SUMMARY

A general matrix method is developed for the solution of
characteristic-value problems of the type arising in meny physical appli-
cations. The scheme employed 1s essentially that of Gauss and Seidel
with appropriate modifications to make it applicable to characteristic-
value problems. An iterative procedure produces a seguence of estimates
to the answer; and extrapolation techniques, based upon previous be-
havior of iterants, are utilized in speeding convergence. Theoretically
sound limits are placed on the magnitude of the extrapolation that way be
tolerated. '

This matrix method is applied to the problem of finding criticality
and neutron fluxes in a nuclear reactor with control rods. The two-
dimensional finite-difference approximation to the two-group neutron-
diffusion equations is treated. Results for this example are indicated.

The calculations were performed on the IBM card-programmed calculstor.

INTRODUCTION

A general matrix method is developed for the solution of
characteristic-value problems of a type arising in many physical appli-
cations. The method of this paper is essentially that of Gauss and
Seidel (ref. 1), which itself is but a special case of the method of con-
Jugete gradients (ref. 2). The adaptation of the Gauss-Seidel technique
to the characteristic-value problem calls for a means of computing suc-
cessive estimates of the characteristic value as well as the vector.

This calculation is made to rely upon Turner's technique (ref. 3) for
assigning e meaning to the ratio of two vectors.

Extrapolation techniques are also employed to speed up the conver-
gence of the iterative process. One of these is based on Turner's orig-
inal formula (ref. 3), and the other is a slightly more complicated
modification. :
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The number of iterations required for convergence is pot studied
theoretically here as in the "n-step" methods, but the minimization of
a suiltable form at each step is derived. -

The method is applied to two-group neutron-diffusion equations.

The calculations were performed on IBM equipment at the NACA Iewds
laboratory by Mary J. Winter.

3
SYMBOLS ¥
The following symbols are used in this report:
A,B,L,U matrices
B,% axial leakage
b,E,F,G,d,X vectors
h grid dimension
i,k indices .
kth thermal multiplication constant
sz average square slowing down length for fast neutrons
Lthz avérage square diffusion length for thermal neutrons
N nunber of nuclei per cc
Pth resonance escepe probability
r radial coordinate
rc core radius
1 u>0
sgn u = -1 u<o0
0 u=20
t reflector thickness
W,m weight functions - +

Y characteristic value
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deviation at i, point of kth iteration (eq. (80))

difference X]S::)L - X}({i)

actual damping rate
bulk damping rate

neutron fluxes

Parsmeter groupings:

Subscripts:
f fast

th thermal

1 2 . 1
a=—7+ BZ al = —
ITO Lf0
Mr, th 1 ’

i )‘“br,fo kbho —LQ

1 2

)”tr,fo 1
= )‘tr thy PthO 1 2
’ L,

- | a | . S
f—Lf2+BZ i sz
1 1
g = L +B2 gl = =
by by
}"tr,fl
m:
Mr,th thy 2
1 1
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tr  transport

0] reactor
1 reflector
2 rod
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THE METHOD

Matrix formuletion. - Consider the matrix equation

AX = yBX (1)

where A and B are n X n matrices, X is an n-component vector, and
the characteristic value y is a scalar to be determined. A may be
separated into the sum of two triangular matrices L and U vwhere L
contains all the diagonal elements of the original metrix A.

This separation, which anticipates the Gauss-Seidel process, is
effected in the following manner: '

A=L4+T (2)

- < 4. =
zij =y, IS 4 zij 0 j>i (3)
g = ey J >4 uyy =0 J<i (4)

If L is a nonsingular matrix (always true if 445 # 0 for all
i), equation (1), modified to

(L + U)X = yBX (5)
may be multiplied by LT, giving
(I + 17U)x = yiimx (6)

For a given X, the quantities L-lUX and L_lBX of equation (6)
may be calculated without the actual formation of Ll. This fact s Which
is very helpful for systems containing large matrices, arises in the fol-
lowing menner and depends upon the triangular neture of L. Let D be
the vector defined by
D = 17U (7) )
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Then
ID=UX=C (8)
whence

gives d,, since all the cy can be computed from U and X in equa-
tion (8). Then

lo1dy + Igpdg = cp (10)
gives d,, and
l3dy + Tgpdy + Iggd5 = oy (11)

gives dz, and so forth, so that L1 need not pe computed in order to
obtain L-lUX. The same argument applies to L 1sx.

Tterative scheme. - Equation (6) may be written

X = L7y - 1l (12)

which may be interpreted as defining the iterative scheme

Koy = Tl B - LUK (13)

in wvhich 71),; d1s an estimate to y +that can be calculated from Xk
To obtain T it1? form the inner product of the vector sgn L'lBXk with
each side of equation (6); thus,

_ (sen L7BY, (T +17M0)K)
(sgn L-1BX L'lBXk)

Equations (13) and (14) are the basic equations of the iterative scheme.
Given eny X, Yy,; 18 computed from equetion (14) and Tiep 204 X

are placed in (13) to yield the next iterémt X, ... This process is
repeated until Xk and *rk 1 converge.

(14)

Vel

Some normalization is necessary in problems of a homogeneous nature.
The simplest method of normalization is to adjust a permanently specified
coordinate of X, to unity before beginning each iteration. This is
accomplished by dividing each element of the vector by the specified
coordinate. -
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The ratio defined by equation (14) was chosen for simplicity of
calculation on availeble punched-card equipment. That ratio can be com-
pared to the Rayleigh quotient (for eq. (13))

- {3, )

K+l (3, ) w9 ) (15)

where
T = LB, (16)
g = (I + LYK, (17)

by noting that each of the relations (14) and (15) constitutes a weighted
1

(1
sum of local (point by point) values Tipr Of Tﬁwl' These local values
are defined by

(1) _ (1) _ (i) /J(]i&) (18)

Tl T Vg1 ©

where gi%) and j(i) are the ith components of G and Jk, respec-
tively. The weighted average associlated with (15) is

TN

L ler
N

while that associated with (14) is

Tirl = Z @5 T]&i | (21)

i

where

(20)

3646
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vhere
®; = Ijl({i)l (22)
N

Equation (15) selects that value of Ty, Vhich minimizes the sum

of the squares of the residuals of equation (6) when that quantity is
thought of as a function of T£+l' The sum of the squares of the resid-

uals is not, of course, the only quadratic form that is suitable for
minimization (ref. 2). Consider the expression

(1) Lo 508 1/2|?
P = p(ry,) =Z e 7Tk 77 " Vel J']gi) sen J}(Si)] (23)
T {]5f2) sen Jii{]

vhich is zero for X, =X and Y =7 This generally positive guan-
tity can be minimized (made closer to its ultimate value zero) by setting

- (Sgn Jk) Gk.)
k+l  (sgn T Jk)

(24)

¥

which is equation (14) expressed in terms of J and G.

Example. - To illustrate the convergence of this method in a spe-
cial case, consider the problem of eguation (1) with

A=/3% -1 -1 0
0 2 -1 -1
0 -1 3 -1 (25)
0 -1 -2 3
and
B=/0 1 0 O
0 010
1 0 0 O (26)
0 0 0 O

which has the resl solution XX} = 1.020070, x¢2) = 1.329658,

X(S) = 1.000000, X(é) = 1.109886; v = 0.549429 and two solutions with
complex characteristic values. This solution was found by the ordinary
process of solving the characteristic equation.




NACA TN 3511

This problem was solved in 15 iterations starting with an initial
guess of X, = (lO,lOO,l,lOOO). The values of successive iterants,

together with those of 7y, are listed in the following teble.

The iter-

ants are normalized so that Xis) = 1 at the start of each iteration:

(1) (2) (4)
k X X X Tt1
0 10 100 1000
1 |-0.692996 | 1.069635 | 1.023212 | -10.634589
2 | .271412 | .438315| .812771 | -1.352353
3 | .848870 [1.565152 { 1.188384 | -.097105
4 | 1.132470 | 1.360721 | 1.120240 .526554
5 | 1.006120 | 1.292707 | 1.097568 .592807
6 | 1.010839 | 1.337044 | 1.112348 .538366
7 | 1.024544 | 1.331918 | 1.110639 .547271
8 | 1.019872 | 1.328104 | 1.109368 .551383
9 | 1.019593 | 1.329848 | 1.109949 .549107
10 | 1.020236 | 1.329788 | 1.109929 .549291
11 | 1.020078 | 1.329596 | 1.109865 .549510
12 | 1.020048 |1.329660 | 1.109886 .549423
13 | 1.020076 | 1.329665 | 1.109889 .549422
14 | 1.020071 {1.329656 | 1.109885 .549432
15 | 1.020070 {1.329658 | 1.109886 .549430

Extrapolation technigue. - If, instead of

four components, the iter-

ant vector has many components, techniques of extrapolation are usually
desirable to speed convergence of the process.
here, which is due to Turner (ref. 3), attempts to evaluate & bulk demp-
ing rate which describes, in an average wey, the over-all trend of the

Individual components of the iterant vectors.

The technique employed

Assume that each iterant Xy 1is made up of the sum of the solution
X and two error vectors E, and Fy satisfying the damping relations

and

Byyy =

k+1

By

- TF

(27)

(28)

3646
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Then the following relations hold:

Xo = X + Ey + Fy " (29)
Xy = X +TEy - TF, (30)
X =X +'1:2Eo + TZFO (31)
Xz = X + TSEO - ¢5F0 (32)
One may compute
X -
,52:_3’__2 (33)
X%

The "vector division" implied in 333 is possible because, under the
initial assumption of error behavior ((27) and (28)), the vectors
X5 - Xz and Xl - Xb are collinear and therefore differ only in length.

If the error vectors are eliminated from equations (30) and (32),
one obtainsg
Xz - T2X )

1 - 12

which gives the answer as a linear combination of the alternate iterants
Xl end Xz.

The preceding analysis suggests that a formula enalogous to (34) be
used. to estimate the answer. The difficulty here is that equation (33)
may be meaningless when equations (29) ito_(32) do not hold. To circumvent
this difficulty, a method of computing 2% is needed. Toward this end,

define S(J)

Rl by means of

o2 - o9 =

2

and define <" by means of

(3) o 5(3)

) ;‘ HJ)‘

(36)
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The direct analogy to equation (14) will be noticed. Equation (36) per-

mits computation, in an average way, of the damping of the error vectors.
With T2 availeble, the extrapolated value X' of X is computed fraom

Xz - TZX
X =_£___é; (37)
l1-7

Tn case the error is damping exactly as assumed in (27) and (28), equa-
tion (36) gives the value indicated by (33) and equation (37) reduces to
(34); that is, X' becomes the emswer X.

Since the ideal damping behavior is rarely an actuality, it is of
interest to examine the effect of the preceding process on error compon-
ents. Suppose that X, 1s more adequately represented by

n
Xo = X + Z Eéi) (38)
i=1
where E(i) has a damping rate (positive or negative) of A;. Then
0 i
n
3 (1
x3=x+in Eé) (39)
i=1
and
n
X, = X+ Z A Eél) (40)
i=1

hold. The extrapolation indicated in equation (37) now yields the fol-
lowing relation between the estimate X' and the answer X:

n 2 ,
X' =X + Z A Oy° - #) g() (41)

i=1 1 - ©

This interpretation is useful, since it indicates the damping effect
upon the errors of three iterations and one extrapolation.

If, for simplicity, one of the errors Eél) and its damping rate
)i are designated by E and A, respectively, then

(kz - Tz)kj—z
2

1 -7

(42)

R(\,t) =

3646
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gives the damping of this error component as a result of |[J iterations
and one extrapolation. The "extreme" value of R (actually that value
farthest from zero; i.e., farthest from maximum damping) maey te found by
setting

R i € T L
a =i, (e3)
This yields
A8 = (—‘1——; 2)'52 (44)

as the equation to be solved for the values of A vwhich are associated
with the errors that receive the minimum damping from the process of j
iterations and one extrapolation. Equations (42) and (44) give Rexb('t) ,
the extreme value of R, as a function only of T and J: '

R (c) = 2 2 (j - z)J/2 (s5)

l-'l:z‘j"'2 3

To £ind the value of T2 so that this function (Rext) cannot exceed the

bounds +1 - that is, so that the slowest damping component (and hence
all components) cannot increase through extrapolation - © must be less
in absolute value than the least of the roots of

. iz
(7)) e ae »

If only such 1‘2 are used, the convergence of the process cannot be
impaired by the extrapolation.

Suppose now that the previous value of R(\,T) is replaced by the
formula

. A2 _ 5By G 1——3—212
R(A,T) = 5 — (47)
1 -7 1 - _'L_j___Tz

In formla (47), j 2 4. The second factor places a zero (max.
damping) at just the points of minimum damping, that is, at the values
of A determined by (44). If now dR/A\ is taken as zero and the limit

41 is placed upon the resulting Rext("z) , the limiting safe values of
'tz are obtained by finding the least of the roots of

e e i | bt ot
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@N-zu—lh*z+u-2ﬂ4TJiE-zu-lh2+u-4hﬂ=o
(48)

2 gatisfies

2o fd-1)0) - 2) % /552 - 125 + 4 (49)
32

Wwhere T

The revised formula (47) has both the effect of ensuring that no compo-
nent will be impaired in its damping by the extrapolation and also that
the least repidly damping component receives a zero contribution in the
extrapolation.

Since, as before, for some error camponent E,

X, =X + B (50)

Xy p =X AI-2g (51)
- J

X=X+ g (52)

in which X represents the answer, the specification of (47) as a damp-
ing formuls implies

2 -2y - N2 4 (g - )t . (53)
j-2(3 102+ (3 -2nt

X'=X+

where X' 1is the extrapolated value of X;. If ME, MW™2E, ana A 7E
are eliminated from (53) using the relations (50), (51), and (52), then

By - 2(j - 1)1—sz_2 + (3 - 2)'1:43{1_4

4

J-2(3-1n%+ (3 -2k (2)

Xl

Comperison of (42)(with J = 3} with (37) on one hand and of (47)
with (54) on the other hand leads to the following valid rule of thumb
to obtain the extrapolated value of X for a given damping function:

Replace the power N of A in the demping function by X;; the result-

ing linear combination of alternate iterants is the formula for the ex-
trapolated X. It is easily verified that the validity of this arises
from the manner in which the error vectors are assumed to behave.

3646
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The smallest roots of equations (46) and (48) are listed in the
following tables:

Eq. (486) Eq. (48)
j <2 j 2
4 [0.8284 4 |0.6667
6 | .8941 6 | .8745
8| .9233 8| .9213
10 | .9399 10 | .9427

These are the upper limits of the "safe" values of +®  within the frame-
work of the definition.

APPLICATION TO REACTOR THEQRY

General remarks. - Multigroup reactor equations can be solved, in
principle, by the present method. The number of components in the vector
polution, to be discussed in detail later, 1s approximately equal to the
product of the number of grid points and the number of groups in the mul-
tigroup scheme. An extreme increase in the number of these elements
lengthens the problem considerably. The calculations here are performed
in accordance with two-group neutron-diffusion theory.

The two-dimensional reactor with control rods, which is considered
later, is suited to two-group calculatibtns, since the control rods are
particularly effective on the thermal group and two-group celculations
are good for thermsl assemblies.

The following illustration is iIntroduced to show the general prin-
cliples of the matrix setup in detail. These principles do not change
for the more complicated two-dimensional problem that is treated later.
A relatively simple one-dimensional problem has been chosen to illustrate
the detailed setup and the consequent matrix.

Example of two-group diffusion equations. - The one-dimensional dif-
fusion equations for a reflected thermal reactor of siab geometry are
(ref. 4)

-a'®_, = - vb® (55)
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and
2
ace
th =
-c'o . +dP, =0 (586)
dxz th £
for the core, and
a%e..
—— -0, =0 57
o £ (57)
and
EE?EQ -g'o. +m, =0 (58)
dxz th £

for the reflector.

The parameters a', b, c', E} £', g', and m are defined in the 1list
of synbols; ¥ 1is the characteristic value of the system and equals 1 for
criticality. When Y converges to a value other than unity, the uranium
concentration is adjusted and the process repeated.

The differential equations (55) to (58) are replaced by finite-
difference equations; the operation dzCP/dx2 is estimated by means of
the approximate formula
e
ax2

X=X

J

vhere the points of the region are numbered in order as grid points of
a finite-difference net, and h is the distance between successive
points. In the following, r, 1s the core radius, Tort the complete

reactor radius, and point 6 lies on the interface:

2

h =@, +0 - 29 (59)

.

0 .1

012345617839

0 Te rc+t

The boundary conditions are that the fast and thermal flux have zero
current across the plane of symmetry (x=O). This condition

o, ae
r
dx x=0

=0 (60)

. AR4A
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can be approximated by
® " %

57— =0 (60a)

for both @ £ and ipth' The condition of continuity of currents at the
interface is met by approximating the derivatives in the expression

a9 ae
- )Ltro ax (rQ -0) = - )\trl ax (rc +0) (61)

for both the fast and thermsl fluxes. The remaining condition is that
the flux be zero at the outer boundary. If the fast flux is designated
by ® and the thermal by 1V, the system becomes:

Equetion _ N
3 % _,
0 h -
¢ + @ - 29
1-5 P d e = - b,
2 J J
h
P ~ ¥5 P7 - Pg
6 Mr,f0 T H - T Mr,el T B > (62)
P, + 9, - 20
7 8 6 1 £19, = 0
2
h
¢y - 20,
8 — s - f'cp8 = 0 which incorporates ¢g =0
h
J

for the fast-balance equations and, for the thermals:
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Equation
i
0 ¥y - wo = 0 A
v + ¥, 4 - 2y, _
1.5 i+l _;1 1y, + Ty =0
h
5 . u =2 u > (63)
tr,th0 — &® “tr,thl~ b
Vg + Vg - 2¥7
1 2 - gy +mpy; =0
h
V7 - 2¥g
8 ———;E———-- g'wa + mPg = O which incorporates Vg = O’)

The variables ¢o to ¢8 and wo to Ws may now be written as XO
to Xg and Xg to Xi7, respectively. The matrix formulation of these

equations is presented in figure 1. The following symbols have been
introduced:

I, = 1/112 (64)
= 2/h° +a (65)
Fy = z/hz + f (66)
¢, = z/h2 +c (67)
G, = 2/n® + g (68)
L= —Eﬁ (69)
M, thO (70)

5 = Xer, o

Recapitulation. - To review the general application of the method
to two-group reactor equations, consider the following broad outline of
this process:

(1) Write the two-group equations with the parsmeter Y introduced
as a multiplier of the production term of the fast-balance equations.

3646
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(2) Express the differential equaetions by their finite-difference
approximations so that they became & linear algebraic set of the type
associated with equation (1).

(3) Perform such iterations and extrapolations as necessary to ob-
tain well-converged values of y and X.

(4) Adjust the uranium concentration and repeat step (3) using the
original answer from (3) for the initial guess X5. The concentration
should be changed so that y -+ 1.

(5) Repeat (3) and (4) until y converges. If criticality is .
desired, change the concentration so that the converged values of y-—1.

TWO-DIMENSIONAL REACTOR WITH CONTROL RODS

Geometry of reactor. - The reactor (see fig. 2) is cylimdrical and
weter-reflected with core composed of aluminmum, water, and uranium, which
are assumed to be homogeneously mixed. The height of the reactor is 70
centimeters, the outside radius 50 centimeters, and the core radius 32
centimeters. Wine cadmium control rods are inserted in the core; one, a
cylindrical rod of 2-centimeter radius, is centered along the axis of the
reactor. The remsining eight rods are equally spaced on a radius of 24
centimeters and are shaped so as to be bounded by coordinate surfaces.
Fach of these rods extends over a radial dlstance of 4 centimeters and
subtends a cenbtral angle of 9°.

The symmetry of this assembly is an important factor in making solu-
tion of the reactor problem feasible. The flux in the 45° sector indi-
cated in figure 2 is adequate to represent the flux in the entire reactor;
in fact, additional symmetry within the sector implies that only half
the sector need be considered. The three-dimensionel problem is made
two-dimensional (computation-wise) by estimasting the neutron leakage in
the axial direction due to the finite height of the reactor. This is
based upon an axial cosine distribution similar to the bare plle solution

(eq. (75)).

Composition and nuclesr parameters. - The core volume 1s proportioned
between the water (p = 1 g/cc) and aluminum by assuming a volume ratio of
gluminum to water of 0.76. The nuclear diffusion constants for the core
and reflector are listed in the following tables. The subscripts 0, 1, 2
refer to the core, reflector, and rod regions of the reactor, respectively:
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Fast Thermsal
Zone sz N Zone | 1.2 P K
£ th My | Pen th
o | 64]3.78 o | 3.471|0.815| 0.95] 1.675
1| 33|3.43 1 |8.3 43 | .98 memem
2 | --|4.35

Parameters for the rod regions are unnecessary because of the sim-

plified treatment of the rod, in which the thermal neutron flux is assumed

to vanish on the rod boundary and the radial and axial leakages are as-
sumed to balance in the absence of fast neutron absorption processes.
The thermal parameters in the preceding table are those associated with

: H
en atom ratio of EE of 350; these, of course, change for different
N

uranium concentrations.

Equations and boundary conditions. - The two~group equations (ref.
4) for the core are taken to be

1 A _ . Mr,tho 1 _
Ve ‘( >+ Bz)“’fo =-7 Xm0 Kino 2 %o =0 (71)
Lro T thO
end
2 (i) im0 1. _, (72)
V ®no " \;2 2)76h0 © Mgp tpo RO 12 £O
+hO ’ £O

All the parameters of equations (71) and (72) are the ordinary nuclear
ones, except the arbitrarily inserted vy, which is a measure of the crit-
icality and is equal to 1 for a critical assembly.

In the reflector the two-group diffusion equations take the form

2 1 2 _ « ,
Vo - (Lz + Bz)"’fl =0 (73)
1
5 1, g2 . Mr,f1 1 -0 (74)
VP - (Lz 2)Pm T, Penl 727 ®f1
thi ’ 1

3646
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vhile the fast-diffusion equation for the rods is taken to bLe

2
v, - B2, = 0 (75)

Any change in rod boundary conditions would not affect the general princi-
ples of the numerical scheme. As will be seen from the boundary condi-
tions, the thermal neutrons do not require a diffusion eguation within

the rods. The region considered in the problem is a 22l sector (of the

circle of fig. 2), one side of which passes through thezcenter of one of
the outlying rods. This is illustrated in figure 3. The syumetry of the
over-all reactor implies that the normal derivatives of the flux across
the surfaces A and B are zero. This implies that the flux at all
points of the circle of figure 2 can be found by solution for the fiux
only in the sector indicated in figure 3. The condition of -continuity
of fluxes and currents is involved at the core-reflector interface, in-
dicated by C in figure 3. The vanishing of the fast and thermal flux
at the outer boundary (D) is also required. The thermal flux is taken
as zero on the edge of the control rod, and the continuity of the Tast
flux and current is considered to hold on the core-rod interfaces. The
details of the mathematical formulation of these conditions are deferred
until the general discussion of the difference equations.

Finite-difference equations. - In order to write the reactor equa-
tions as finite-difference approximations, the sector of figure 3 is
divided into a grid net of points. The flux is determined by solution
of the linear algebraic system of equations which result from writing
the finite-difference approximation to the fast- and thermal-diffusion
equations st each point. The grid arrangement used in the present prob-
lems is indicated in figure 4. The thermal flux (components 1 to 139 of
the vector solution) has the following breakdown into groups of compo-
nents: reflector (1 to 73), core-reflettor interface (74 to 79), core
(80 to 139). The fast flux (140 to 291) has the following breakdown:
reflector (140 to 212), core-reflector interface (213 to 218), core (215
to 284), control rods (231, 232, 237, 238, 243, 244, and 285 to 291).

The number of components associated with the thermal end fast fluxes,
respectively, differs because of the assignment of boundary conditions at
the control rods, which brings the fast flux inte a larger area of
definition. )

For two-dimensional cylindrical geometry, the operation of the form
V2¢ is given by
2
§_§ +
or

B
oo

v2 =

(786)

R
™

=
or 30

-
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This form is to be replaced by a difference operation that relates each
point to its four nearest neighbors. If the point in question is desig-
nated by the subscript zero and the others are

1

hI‘
4 -bg O hy -2 oo

b

.

3

where h, and hy are the grid widths in the r and 6 directions,
respectively, then at @ = ?q the following epproximation is used:

o s (s -

6

With this designation (and barring certain exceptional points to be
discussed later) , one may move fram point to point on the grid and write
equations of neutron balance for each of the two neutron groups.

The following equations may be teken as typical illustrations:

Thermal-balence equation 93 (see fig. 4):

(;;‘l'i t E}%;)Xag + (;r'l‘é Zrhz) ez (Xgp + Xgy) -

N
2 2 1 tr,£0 1
( 2 ez T 2" Bzz)x% + S Pypg —5 Xpge = 0 (78)
by he"r”  Lgyg tr,thO Leo
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Fast-balance equation 234:

i, 1 1 1 1
( 7+ 2rh%>X228 + ( - Zrh;>X24O + rzhez (Xpz3 + Xogs) -

2
b, b,
( el é)x - I R (79)
2 2 Z |7234 ‘thO 2 793
b BTt L, Moy, £0 Liro

In contradistinction to equations (78) and (79), there are certain
special equations which hold at the exceptional points referred to
earlier. These equations result from one or more of the following
conditions:

(1) Continuity of currents at interfaces
(2) Zero flux at the outside boundary

(3) Zero current across planes of symmetry
(4) Change in grid dimensions

Condition (1) is treated by matching a suitable ratio of normal
derivatives from elther side of the interface. Each of these de-
rivatives is evaluated by a five-point differentiation formula. Con-
dition (2) is treated by writing the difference epproximstion to the
diffusion equation for points adjacent to the outside boundary with
zero replacing the flux at the bhoundary point.

Condition (3) is accounted for by writing the diffusion equation of
a point on the plane assuming the same flux at grid points on either side
of the plane. For condition (4), 6-wise interpolation formulas are used
to define fluxes at the points marked "X" on figure 4, and these are uti-
lized, where needed, in writing diffusion equations in the finer net. If
each equation of the set is written in order and the production terms are
isolated as illustrated in equation (71), then the matrix equation con-
structed from the approximate finite difference may be written in the
form of equation (1).

The matrix B 1is singular, largely consisting of zero elements with
an essentially disgonal group of nonzero terms somewhat off the leading
diagonal. The matrix A has a substantiasl number of nonzero elements
crowded quite close to the leading diagonal. This latter situation is
nunerically desirable, as elements far from the leading diagonel tend to
slow the convergence of numerical processes.
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If criticality is desired, the concentration of fissionable materisl
is adjusted, after y and X bhave converged, and a whole new set of
calculations is run until a new value for y 1s reached. This process
may be continued until v = 1.

The method cen also be used to compute reactivity changes; the cal-
culation time is again shortened considerably if flux distributions are
not demanded.

Solutions of two-dimensional problem. - The results of the calcula-
tions of the supercritical (y = 0.948) case are shown in figures 5 to 7.
Figure 5 gives the fast flux as a function of r for 6 = 0°, 9°, and
18°. The control rods have no substential effect on the fast flux. Fig-
ure 6 gives the corresponding thermal flux and shows the localized effect
of the control rods. Figure 7 presents iso-flux contours of the thermal
flux. The 0.19 contours in the reflector and the 0.234 contour in the
core represent relative maximums.

COMMENTS ON APPLICATION CF THE METHOD

A number of numerical guantities may be examined in an attempt to
evaeluate the degree of convergence of a system. One of the most natural
of these quantities is the sum of the squares of the residuals. Another
may be formed by considering the fact that, as the 1limit is approached,

i/r must tend toward unity. This meang that the devia-

. i
h t
the ratio Tk el

+
tion defined by

A4
. (ii =1 - kil (80)

Yk+l

must tend toward zero. The average absolute value of the deviation,
summed over all points of the reactor is

—_— Y
] - = @)

where n is the number of reactor points.

366



7/ 92

NACA TN 3511 23

An illustration of the behavior of this quantity is giveh in the
following table:

T+l ]ZEEZI Aﬁii
max

6 10.02199 | 0.2133

15 .02551 .3156

22 .00254 L0147

31 .00130 .0113

40 .000793 .0061L

49 .00028 .0027

The iterants listed are those which just precede the extrapolation proc-
ess. These are chosen so as to minimize the effect of fluctuations in-
troduced by the extrapolation technique.

These illustrative values come from the second general process;
that is, after y had converged to 1.2064, the concentration (end hence
elements of the matrices A and B) was changed and a new series of itera-
tions begun. This converged (more rapidly than the first run) to a
value of 0.948.

To estimate the value of uranium concentration needed for the new
run, the equation

1.2064 ki, (01d) = Ky (new) (82)

was used to compute a new kth from which to obtain a new concentration.
This formula is an spproximation, since the influence of a change in con-

centration upon Lthz is appreciable. The better rate of convergence of
the second run is caused by the fact that the flux is relatively inde-

pendent of the characteristic value so that the initial estimate for the
second run weg a relatively good one.

The quantity (ig reflects the convergence of 7y, which is faster
than that of the vector X.

In order to determine the degree of convergence of X, consider the
quantities

o= ) | = 2 [ -5 ()
i=1 i=1
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d
6] - 2 ()
and the maximm ii% designated by '5k+i| . Typical values of these
quantities are as follows:
T = 1.206 T = 0.948
Bl ) G Isﬁﬁ 512_3 e L Ay 5}&2 ]S::i
111 |0.0099 | 0.000034|0.000269 6 |0.3299 | 0.001137 | 0.00918
122 .0083 | .000028| .000176 15 .2139 | .000735 .00530
133 | <0048 | .000017| .000157 22 .0223 | .000077 .000204
144 | .0028 | .00Q00LO|( .0000904 31 L0044 [ .000015] .0000666
155 | .0022 .000008| .0000709 40 .0020 | .000007 .0000245

The sums of the squares of the residusls for the two cases 1 = 1.206
and ¥y = 0.948 are as follows:

T = 1.206 T = 0.948
a1 ZRy2 Kl | ZRi%
111 | 9.44x1077 6 |1.53x0°°
122 | 4.98%1077| |15 |3.51x10-4
133 | 2.66%1077 22 |1.80x1076
144 | 8.60x1078 31 |1.22%10°7
155 | 5.37%1078 40 |1.99x107°

Several general observations can be made about the process:

(1) The number of iterations in this problem starting from an initial
guess to a well-converged value of X was about 150 to 175.

(2) In general, 8 to 10 iterations between extrapolations seem desir-
able, as the use of too few lterations does not allow the establishment of
a fairly uniform damping rate.

(3) The extrapolation formula of equation (37) seems best for rough
estimates where error components are being damped repidly; that of equa-
tion (54) seems to be superior for later extrepolations where one is
closer to the solution.

3L/
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(4) When computed values of 12  exceed the upper limit, they may
be replaced by the limit from the tebles giving roots of equations (46)
and, (48) and extrapolation carried out, or two more iterations performed

wvith 7“2 recomputed until it falls within prescribed limits.

The following table gives the sum of the squares of the residusals
for (a) direct iteration fram Xz to Xy, (b) 8 iterations from Xs;

followed by extrapoiation with "t2 gafe" when "12 camputed" was too
large, then iteration to g, (c) 8 iterations from XSl followed by

2 iterations and a test until "t° computed" was less than iy 2 safe,"
then extrapolation followed by iteration to X49:

2
Case ZRi

a | 1.35%x10°7

b | 3.44x3079

e | 1.68x1078

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, May 12, 1955
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Figure 1. - Matrix formulation of equatione (62) and (63).
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Pigure 2. - Two-dimensional reactor.
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Figure 4. - Reactor grid points.
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